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Abstract
Some properties of classical population processes that comprise births, deaths
and multiple immigrations are investigated. The rates at which the immigrants
arrive can be tailored to produce a population whose steady state fluctuations
are described by a pre-selected distribution. Attention is focused on the class of
distributions with a discrete stable law, which have power-law tails and whose
moments and autocorrelation function do not exist. The separate problem
of monitoring and characterizing the fluctuations is studied, analysing the
statistics of individuals that leave the population. The fluctuations in the size
of the population are transferred to the times between emigrants that form an
intermittent time series of events. The emigrants are counted with a detector
of finite dynamic range and response time. This is modelled through clipping
the time series or saturating it at an arbitrary but finite level, whereupon its
moments and correlation properties become finite. Distributions for the time
to the first counted event and for the time between events exhibit power-law
regimes that are characteristic of the fluctuations in population size. The
processes provide analytical models with which properties of complex discrete
random phenomena can be explored, and in addition provide generic means by
which random time series encompassing a wide range of intermittent and other
discrete random behaviour may be generated.

PACS numbers: 05.40.−a, 05.49.Df, 89.75.−k

1. Introduction

The richness in behaviour exhibited by complex systems and networks stems from their being
far from equilibrium and in a highly correlated state. The fluctuations in these systems are large
and frequently described by scale-free probability density functions. Recently, manifestations
of scale-free fluctuations have been observed in discrete random phenomena in contrast to
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more familiar examples that describe continuous behaviour. One example of this is the order
distribution of networks, being a measure of the complexity exhibited by diverse systems such
as the Internet and WWW [1, 2], organic metabolisms [3], protein interactions [4] and social
networks [5]. The order distribution describes the number N of incoming or outgoing links that
connect nodes within the system, and it is found that these are typically scale free with discrete
probability distribution function having a power-law tail, p(N) ∼ 1/Nγ . This contrasts with
a ‘random network’ where the order distribution is Poisson [6]. Another example is presented
by the now classical paradigm of a complex system, the sandpile. The distance travelled by
grains in an avalanche, the ‘flight length’, is a continuous random variable with power-law
density. This is paradoxical, for the variance of the distance travelled does not exist, and so
the energy required to transport the particles is apparently infinite. In fact, a more careful
analysis reveals [7, 8] that the particles’ flight lengths comprise a sum of steps where the length
of each step is a random variable with finite variance. However, the number of steps N is a
discrete random variable with probability distribution having a power-law tail, so that once
again p(N) ∼ 1/Nγ . The power-law behaviour of the flight-length distribution is therefore
inherited from the number of times a grain is perturbed during an avalanche.

Situations in which such discrete probability distributions can arise is the first topic to be
treated in this paper. Models for the order parameter in complex networks have been derived,
but these analyses are confined to those instances where N is large and can be approximated
by a continuum, the so-called mean-field approximation. Here we recognize the fact that N is
a discrete variable and develop two simple stochastic processes that can produce distributions
with power-law tails as special cases of their more general behaviour. These processes are
variations upon birth–death–immigration (BDI) processes that have been widely studied in the
mathematical literature [9] and have featured, for example, in optics applications as models for
the laser below threshold [10] and for clutter that limit the performance of coherent detection
systems [11]. A particular virtue of these models is that in addition to providing an analytical
means for generating single-fold probability distributions with power-law characteristics, the
joint properties are also completely defined by the process, enabling correlations to be studied
within the same theoretical framework.

In reviewing population models, the simplest case to consider in the first instance is the
birth–death process. Births and deaths occur in proportion to the instantaneous size of the
population and cause fluctuations. However, such a process is unstable, having a stationary
population size that is zero or infinite unless the birth and death rates are identical. This
process can be stabilized by the ingress of immigrants to the population, provided the death
rate exceeds the birth rate. The immigrants in most models enter singly and at a constant rate,
instantaneously increasing the size of the population by 1. In this case, the stationary solution
for the process is the negative binomial class of probability distributions, one member of which
is the geometric or Bose–Einstein distribution that describes the fluctuations of thermal light.
Other models exist that extend this process to when immigrants enter the population in pairs
[12], the motivation being the study of squeezed states of non-classical light. The steady state
of this process has a distribution involving Laguerre polynomials and these exhibit odd–even
effects, illustrating the non-trivial effect that immigration of multiples can have.

A variation of the BDI process to one with no births but with immigrations occurring
singly, in pairs, . . . , m-tuplets was introduced [13] to study how models having identical
single-fold probability distributions can nevertheless be differentiated through a study of the
higher order joint statistical properties. This work was motivated by the need to develop
generic tools for distinguishing between candidate models of a complex physical process.
The death–multiple immigration (DMI) model where m-tuplet immigrants arrive with rates
αm that are particular to their order facilitates this characterization problem because of a
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useful property of the stationary state of the process. The stationary state can be tailored to
have a pre-selected form by uniquely prescribing the rates at which the m-tuplet immigrants
arrive. The DMI model can be generalized to a birth–death–multiple immigration (BDMI)
model, which is a different stochastic process that nevertheless can also be tailored to have a
pre-selected stationary solution. It is this property that we will exploit in the first part of the
present paper, where we determine the rates for the immigrants that produce a stationary state
of the population that belong to the class of discrete stable distributions [14].

Systems described by power-law distributions or densities are typified by large fluctuations
and this prompts the practical question of how the behaviour of such populations can be
measured, the treatment for which constitutes the second part of the paper. The methodology
used [15] for counting photoelectrons is particularly appropriate for this purpose. This
technique obtains the joint probability distribution for there being N members present in
the stationary population, and with n emigrants having been counted in a specified time
interval, usually called the integration time of the counting mechanism. The emigrations are
treated as additional deaths within the population and constitutes a series of emissions that
is modulated by fluctuations in this population. In this way, the fluctuations in the internal
population size are transferred to an external series of countable events.

Although the counting distribution is not of the discrete stable class, it does retain the
power-law character of the monitored population, and so its moments and correlation functions
are not defined. This prompts the final question that the paper addresses, which is how the
fluctuating time series can be characterized using familiar statistical measures. To address
this aspect of the problem we recognize and exploit the fact that any detection scheme has a
finite dynamic range that will limit or saturate the number of counted emissions, and a finite
response time so that the detector is incapable of resolving events that occur in too rapid a
succession. The paper concludes with a discussion of the broader implications of this work,
and the avenues by which it can be developed.

2. Multiple immigration models

This section considers two population models, one describing deaths and multiple
immigrations, the other births, deaths and multiple immigrations. The general solution of
these two processes will be derived and then particular solutions that have a discrete stable
law as the stationary state of the population will be obtained.

2.1. The death–multiple immigration (DMI) process

The population evolves according to a death–multiple immigration model (DMI). The
population size increases through immigration of singles, pairs, . . . , m-tuplets, . . . , which
arrive at rates αm � 0, and is depleted at a constant rate µ by deaths that occur singly in
proportion to the instantaneous size of the population. The rate equation for this process

dPN(t)

dt
= µ(N + 1)PN+1 − µNPN − PN

∞∑
m=1

αm +
N∑

m=1

αmPN−m (1)

describes the evolution of PN(t), the probability that the population comprises N members at
time t. The solution of equation (1) can be found using the generating function

Q(s; t) = 〈(1 − s)N 〉 =
∞∑

N=0

(1 − s)NPN(t) (2)
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from which factorial moments and probabilities can be determined:

〈N(N − 1)(N − 2) · · · (N − r + 1)〉
〈N〉r =

(
− 1

〈N〉
d

ds

)r

Q(s; t)

∣∣∣∣
s=0

PN(t) = 1

N !

(
− d

ds

)N

Q(s; t)|s=1.

(3)

The single-fold generating function satisfies the partial differential equation,

∂Q

∂t
= −µs

∂Q

∂s
− F(s)Q (4)

where

F(s) =
∞∑

m=1

αm(1 − (1 − s)m) (5)

and must be solved subject to the boundary conditions Q(0, t) = 1 and Q(s; 0) = Q0(s) =
(1 − s)Mwhich imply that the probability distribution has unit normalization at all times and
that the population initially has M members present.

The solution of equation (4) can be written as [16]

Q(s; t) = Q0(�(s; t)) exp

(
−

∫ t

dt ′�(s, t ′)
)

where
∂�

∂t
+ µs

∂�

∂s
= 0

and

�(s; 0) = F(s).

The stationary solution for the generating function is

Q(s;∞) = Qst(s) = exp

(
−

∫ s

ds ′ F(s ′)
µs ′

)
(6)

which is evidently dependent upon the rates αm at which the immigrants arrive. Moreover, by
judicious selection of the function F(s) it is possible to tailor the process to have a specific
stationary state. The condition that the DMI process can produce a pre-selected stationary
solution is contingent upon the convergence of the series given by equation (5) and that the
immigration rates αm � 0 for all m � 1. There is a subtle and non-trivial relationship between
the immigration rates and the stationary solution. For example, if the rates are selected from
one member of the negative binomial class of distributions, e.g. the geometrical distribution
with αm = aξm where a > 0 and 0 < ξ < 1, then

F(s) = aξs

(1 − ξ)(1 − ξ(1 − s))

and so

Qst(s) =
(

1 +
ξ

1 − ξ
s

)−a/(1−ξ)

which is the generating function for the entire negative binomial class of distributions [9].
The continuous Lévy stable distributions [17] are defined through their characteristic

function, this being the Fourier transform of the probability density function. These
distributions are invariant under convolution with themselves, hence the epithet ‘stable’, and
have probability distribution functions with power-law tails p(x) ∼ 1/x1+υ where 0 < υ < 2,
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Figure 1. Immigration rates αm, for the DMI process, as a function of the order of the m-tuplet for
ν = 1/4, 1/2 and 3/4 [14].

so the variance does not exist. The special case υ = 2 is the familiar Gaussian distribution. By
analogy, it is possible to define a class of discrete stable distributions through their generating
function

Q(s) = exp(−Asν). (7)

This defines positive definite distributions provided that 0 < ν � 1, and where A is a positive,
real constant that acts as a (unimportant) scaling factor. These discrete variables N have
probability distribution functions with power-law tails for 0 < ν < 1, namely PN ∼ 1/N1+ν ,
so that the mean does not exist. The special case ν = 1 when inserted in equation (7) gives
the familiar Poisson distribution, which does not have a power-law asymptote. The Poisson
distribution therefore has an analogous status to discrete stable distributions as the Gaussian
does to continuous stable densities. We shall now show how the class of discrete stable
distributions form the stationary state of a particular DMI process.

From equations (6) and (7) the unique choice of F(s) that gives the stable law generating
function is

F(s) = Aµνsν ≡ asν.

Using equation (5) the immigration rates can be determined through writing

asν ≡ a(1 − (1 − s))ν =
∞∑

m=1

αm(1 − (1 − s)m)

the left-hand side of which can be expanded in powers of (1 − s) because 0 � s � 1,
whereupon the coefficients αm are determined to be

αm = −a�(m − ν)

�(−ν)m!
. (8)

These coefficients are all positive only if 0 < ν < 1, which covers the whole parameter
range for the power-law regime of the discrete stable distributions. Moreover the rates are
independent of the death rate, this being the other parameter in the model. The special case
ν = 1 corresponds to no multiple immigrations, i.e. α1 = a and αm = 0 for m � 2, which
is the Poisson process. Figure 1 shows αm as a function of the order of the multiplets for
a = 1, µ = 2 and ν = 1/4, 1/2 and 3/4, and reveals that the immigration rates themselves
have power-law tails for large values of m, i.e. αm ∼ 1/m1+ν . This illustrates the unique
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Figure 2. Temporal evolution of the PDF of the death–multiple immigration population model
initiated with M = 5, ν = 1/2, a = 1 and the death rate µ = 2 for times µt = 0 ( ), 0.2 (�),
2 (♦) and ∞(�). The N−3/2 tail of the distribution is established immediately [14].

dominance of the power-law behaviour in contrast to the case when immigrant arivals are
governed by a geometrical distribution, for example, which we have seen generates an entire
distribution class from one member of that class. The µs ′ term in the denominator of the
integrand appearing in equation (6) is a consequence of deaths in the underlying process.
Its presence means that for power-laws, and only for power-laws, the immigration rates are
mirrored by the stationary distribution of the population itself.

With the choice of immigration rates given by equation (8), the PDE for the generating
function is

∂Q

∂t
= −µs

∂Q

∂s
− asνQ

whose solution can be found by elementary means to be

Q[M](s; t) = Q0(f (s; t),M)QE(s; t) = (1 − f (s; t))M exp

[
−asν

νµ
(1 − exp(−νµt))

]
f (s; t) = s exp(−µt).

(9)

This describes the evolution from an initial state PN(0) = δN,M to a stationary state with stable
law generating function:

QE(s;∞) = Qst(s) = exp(−asν/νµ). (10)

The evolution of the distribution corresponding to equation (9) is illustrated in figure 2 for the
case when ν = 1/2, this being one of the few cases for which the stationary distribution can
be expressed in closed form, namely,

PN = 2

π1/2N !

(
a

µ

)N+1/2

KN−1/2

(
2a

µ

)
with Kν(z) a modified Bessel function [18]. This distribution has power-law tail with
PN ∼ N−3/2, as can be seen in figure 2 where the other parameters are a = 1, µ = 2
and M = 5. Note that the tail of the distribution is established immediately, implying that
moments of the distribution do not exist for any t > 0. This is because the rates αm permit a
large number of immigrants to enter at a rate that is not exponentially bounded.

The joint generating function that describes the population having sizes N and N ′

following a delay time t, can be deduced from the stationary solution together with equation (9),
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conditioned upon there being N members initially present, namely,

Q(s, s ′; t) = 〈(1 − s)N(1 − s ′)N
′ 〉 =

∞∑
N,N ′=0

(1 − s)N(1 − s ′)N
′
PNP (N ′|N)

=
∞∑

N=0

Q[N](s ′; t)PN(1 − s)N

= exp

[
− a

νµ
(s ′ν(1 − exp(−νµt)) + (s + (1 − s)s ′ exp(−µt))ν)

]
(11)

from which joint distributions and, in principle, autocorrelation and higher order statistical
measures can be obtained. However, because the joint probabilities also have power-law
tails, the autocorrelation function is not defined. A noteworthy property of equation (11) is
that it is not invariant to the interchange of s with s ′, which implies that the death–multiple
immigration population model does not possess a doubly stochastic representation [13]. Hence
the population cannot be regarded as evolving in response to a continuous random fluctuation:
in quantum optics terms the process is non-classical. Equations (9) and (11) provide a closed
form solution for the single-fold and joint evolution of a stochastic process with discrete
power-law stationary distribution. The next section shows how a similar stationary state can
be obtained from a different stochastic process that incorporates births into the formulation.

2.2. The birth–death–multiple immigration (BDMI) process

The population in this case evolves in a similar fashion to that of the process detailed above.
However, in this instance it not only increases due to multiple immigrants but also due to births
that occur at a constant rate λ and in proportion to the instantaneous size of the population.
The rate equation for the BDMI process is

dPN(t)

dt
= µ(N + 1)PN+1 − (λ + µ)NPN + λ(N − 1)PN−1 − PN

∞∑
m=1

αm +
N∑

m=1

αmPN−m

(12)

and the corresponding generating function is a solution of

∂Q

∂t
= −s(µ − λ(1 − s))

∂Q

∂s
− F(s)Q (13)

where F(s) is given by equation (5). The general solution is given by

Q(s; t) = Q0(�(s; t)) exp

(
−

∫ t

dt ′ �(s, t ′)
)

where
∂�

∂t
+ s(µ − λ(1 − s))

∂�

∂s
= 0

and

�(s; 0) = F(s).

A stationary solution of this process only exists if the death rate exceeds the birth rate, µ > λ,
in which case

Q(s;∞) = Qst(s) = exp

(
− 1

µ − λ

∫ s

ds ′ F(s ′)
s ′(1 + bs ′)

)
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Figure 3. Immigration rates αm, for the BDMI process, as a function of the order of the m-tuplet
for ν = 1/4, 1/2 and 3/5.

where b = λ/(µ − λ) > 0. It can be seen that a prescribed stationary solution of this process
can be obtained, but that the function F(s) will necessarily have a different form to the DMI
process, for which b = 0. This in turn means that the immigration rates αm will be dependent
on the birth and death rates.

For the BDMI process to have a stable law generating function as its stationary state
requires F(s) to be given by

F(s) = A(µ − λ)ν(1 + bs)sν ≡ a(1 + bs)sν.

Upon expanding this in powers of (1 − s) and equating the result to terms in the expansion
given by equation (5) gives the immigration rates:

αm = a�(m − ν)(mλ − (m − 1 − ν)µ)

�(−ν)m!(µ − λ)(m − 1 − ν)
. (14)

Figure 3 shows the form of the rates for a = 1, µ = 12/5, λ = 2/5 and ν = 1/4, 1/2 and 3/5.
Note than when λ = 0 equation (14) reduces to equation (8). It is interesting to note that for
the BDMI process, the αm are dependent on the birth and death rates in addition to ν whereas
the DMI process contains the constant ν alone. The rates (14) are all positive provided that
0 < ν < 1 − 2λ/µ, which necessarily reduces the range of parameters for which this process
has the stationary solution of choice. The generating function satisfies the PDE

∂Q

∂t
= s(−µ + λ(1 − s))

∂Q

∂s
− aν(1 + bs)sνQ (15)

with solution

Q(s; t) = Q0

(
sθ

1 + bs(1 − θ)

)
exp

[ −asν

(µ − λ)ν

(
1 − exp(−ν(µ − λ)t)

(1 + bs(1 − θ))ν

)]
(16)

θ = exp(−(µ − λ)t).

The stationary solution takes the form

Q(s;∞) = Qst(s) = exp(−asν/ν(µ − λ)) (17)

which has an identical form to the stationary solution of the DMI process, apart from a
different parameterization. The distribution has power-law tail PN ∼ N−(1+ν) with index
in the range −1 to −2(1 − λ/µ). This suggests that for a particular choice of parameters,
the stationary single-fold distributions of both processes can be identical and any difference
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models, initiated with M = 5, ν = 1/2, a = 1 for both processes and µ = 2 for the DMI process
and µ = 12/5, λ = 2/5 for the BDMI process. A difference in the PDFs is apparent until the
time-dependent behaviour dies away.
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Figure 5. Plot of the probability of a population increase (PI) as a function of t, where the full and
dashed lines represent the DMI and BDMI process respectively. This represents the probability
p(N = 4, t |N = 3, t + �t), where in this instance N = 3.

will appear in their transient and correlation properties or from properties derived from these.
Figure 4 shows a plot of the transient solutions for the DMI and BDMI processes, for t = 0.1.
The choice of parameters leads to the same stationary state as that shown in figure 2, but
the transient behaviour differs, albeit by a small amount. This difference can be discerned
by consideration of the time for the population size to change by a similar value for either
process. Because the BDMI includes births, the probability for the population increasing
from N to N + 1 in a time interval �t will be greater than that for the DMI process.
Figure 5 shows an example of this, the probability of a population increase (PI) by 1 in a
time �t

PI = p(N = 4, t + �t |N = 3, t).
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We can calculate the joint generating function that takes the form

Q(s, s ′; t) = exp

[
− a

ν(µ − λ)

(
s ′ν

(
1 − exp(−ν(µ − λ)t)

(1 + bs ′(1 − θ))ν

)
+

(
s +

(1 − s)s ′θ
1 + bs ′(1 − θ)

)ν)]
.

(18)

Once again the autocorrelations and higher order statistical measures are undefined because
the joint probabilities have power-law tails. Note that if λ = 0, the births are removed and
equation (18) reduces to the joint generating function of the DMI process.

3. External monitoring of a population process

It is often impossible to make a direct measurement of the population but rather only some
external manifestation of its evolution. Many experimental situations externally monitor
the evolution by counting the number n of emigrants that leave the population at rate η. These
emigrants form a series of events that can be counted in time intervals of duration T, the
integration time of the detector [12]. Formulating the externally monitored counting process
necessitates introducing the joint probability distribution pN,n(T ) for a stationary population
of size N and with n emigrants having been counted in the integration time interval [0, T].
Modelling the counted emigrants requires the inclusion of an additional death process to
equation (1). This produces the following rate equation for the DMI process where the last
two terms relate to the deaths due to emigrations [16]:

dpN,n(T )

dT
= µ(N + 1)pN+1,n − µNpN,n − pN,n

∞∑
m=1

αm

+
N∑

m=1

αmpN−m,n + η(N + 1)pN+1,n−1 − ηNpN,n. (19)

This can be solved with the aid of the joint generating function for the counted population

Qc(s, z; T ) = 〈(1 − s)N(1 − z)n〉. (20)

When the immigration rates are selected according to equation (8), the generating function for
the integrated statistics is a solution of

∂Qc

∂T
= (ηz − µ̃s)

∂Qc

∂s
− asνQc (21)

where µ̃ = µ + η is a composite death rate, and the solution is initiated from the stationary
solution for the population, so that Qc(s, z; 0) = Qst(s). Hence the generating function for
the integrated statistics is

Qc(s, z; T ) = Qst(�)Q1(s, z; T ) = Qst(�) exp

(
− a

(1 + ν)ηz
(�(s, z; T )ν+1F(1 + ν, 1, 2

+ ν; µ̃�(s, z; T )/ηz) − sν+1F(1 + ν, 1, 2 + ν; µ̃s/ηz))

)
�(s, z; T ) = [ηz + (µ̃s − ηz) exp(−µ̃T )]/µ̃

(22)

where F(a, b, c; x) is the hypergeometric function [18]. This methodology can also be applied
to the BDMI process, which leads to the generating function for the integrated statistics being
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Figure 6. A realization of the counted series of events, with µ̃ = 3 and the other parameters
identical to those in figure 1. The integration time T = 5. The emanations show wide variability
in the size of events and also in the times of their occurrence [14].

Qc(s, z; T ) = exp(−(G(s) − G(�))) exp

(
− a�ν

(µ̃ − λ)ν

)

G(s) = a

λ(u+ − u−)

[
sν+1

ν + 1

(
1

u−
F(1, 1 + ν, 2 + ν; s/u−) − 1

u+
F(1, 1 + ν, 2 + ν; s/u+)

+
b̃(1 + ν)s

(2 + ν)

(
1

u−
F(1, 2 + ν, 3 + ν; s/u−) − 1

u+
F(1, 2 + ν, 3 + ν; s/u+)

))]

�(s, z; T ) = u+(s − u−) exp(λu+T ) − u−(s − u+) exp(λu−T )

(s − u−) exp(λu+T ) − (s − u+) exp(λu−T )

u± = ±(1 + 4b̃c̃z)1/2 − 1

2b̃
b̃ = λ

µ̃ − λ
c̃ = η

µ̃ − λ
.

(23)

Denoting Qc(z; T ) = Qc(0, z; T ) in conjunction with equation (3) and differentiating with
respect to the z variable formally obtains factorial moments and distributions for the counted
series of events comprising emigrants alone. The counting distribution for both processes has
power-law tails for all integration times T, an observation that distinguishes this integrated
process from those with finite moments, which necessarily become Poissonian in the large T
limit. This is because the events within a long integration time can be decomposed into many
independent groups, each of which is approximately stably distributed, and thereby so is their
sum.

Using the methods described in [19] it is possible to simulate the behaviour of these
models and thereby produce time series for the processes. A realization of the DMI process is
illustrated in figure 6. Note the variation of size and the intermittent nature of the emissions,
both being manifestations of the power-law distribution.

These discrete stochastic population processes have stationary solutions possessing power-
law characteristics in the stable regime. The emigrations from these populations form a series
of discrete events that can be sampled. The resulting time series is a realization of the behaviour
of the parent population, also possessing power-law characteristics thereby demonstrating the
dominance of the embedded power-law. The nature of the power-law prevents the formation of
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any standard statistics other than classification using the probability distributions of fluctuations
in the time series. The next section considers the limitations that any real detection system
has upon measuring these fluctuations, and how this can be incorporated advantageously to
regularize the fluctuations.

4. Construction of statistical measures by clipping

The characterization of any real population process or series of events will be limited in
practice by the dynamic range and time resolution of the measuring or ‘detection’ system as
well as by the finite time available for the measurement. These limitations are of particular
concern in the present context for several reasons. In particular, the probability of finding
a very large fluctuation in the number of individuals leaving the population is exceptionally
high for power-law processes and the detector may saturate so that these events do not register
correctly. Moreover the chance of observing the most extreme events in an experiment of
finite duration is small. Hence the tail of their distribution will be ill-defined and statistical
measures such as moments and correlation functions will always be finite but will change with
measurement time. Thus the registered train of events will generally be different from that
predicted by the ideal population model discussed earlier and although it may retain some
characteristics of the original series, the loss of information during detection may lead to
modified statistical properties and reduced measurement accuracy. One method by which this
problem can be controlled and quantified is to employ the technique of ‘clipping’ or ‘limiting’.

Clipping is a technique more familiar in the context of analogue signal processing and was
originally developed as a method for ‘jamming’ radar and communication systems [20]. The
term is generally applied to a process in which the original signal is replaced by a telegraph
wave that takes values ±1 according as the signal lies above or below a chosen level. In the
case of a Gaussian signal clipped at zero or hard limited, the spectrum is broadened according
to the well-known ‘arcsine‘ formula or Van Vleck theorem [21]. A modified version of the
technique was first applied to digital signals in the late 1960s as a means of simplifying the
post detection processing of series of photoelectric events in light scattering experiments [22].
The quantity of interest was the autocorrelation function of the series and this required (at
the time) unattainably rapid multiplication of the numbers of events in samples recorded at
different times. To overcome this problem the number of counts registered in each sample
time was replaced by 1 or 0 as follows:

ck(t, T ) =
{

0 0 � n(t, T ) � k

1 n(t, T ) > k.
(24)

It can be shown that the shape of the autocorrelation function of detected thermal light is
not changed by clipping one autocorrelation channel in this way: a procedure that greatly
simplified the multiplication process at a small cost in statistical accuracy [23]. Various
refinements of the method, such as the use of a distribution of clipping levels and the technique
of scaling, were developed to avoid distorting the correlation function in the case of other
kinds of light [24].

In view of the large excursions in count rate predicted for power-law population models,
the procedure (24) might well be necessary in the present context to avoid the unknown
non-linear behaviour of any counting device. Alternatively, it could be adopted as a simple
idealized model for effects of this kind. Of course the application of such a procedure will
change both the statistics and correlation properties of the stream of individuals leaving the
population. The distribution of the new counting process will evidently be different and,
more importantly for our purposes, its moments and correlation functions will be finite. The
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question is: is it possible to make realistic measurements that are sensitive to the parameters
of the model? In order to begin to answer this question it is useful to consider the simplest but
most extreme form of (24) when the series of events is hard limited:

c0(t, T ) =
{

0 n(t, T ) = 0

1 n(t, T ) > 0.
(25)

Since the data now consist purely of 0 and 1 the generating function of the clipped distribution
can be written as

Qcl(z, T ) =
1∑

n=0

(1 − z)npn = p0(T ) + (1 − z)(1 − p0(T )). (26)

Using equation (3) and p0(T ) = Qc(1, T ), the clipped mean takes the form

c̄(T ) = 1 − p0(T ) = 1 − Qc(1, T ) (27)

which depends on integration time. This process may seem a little severe, however, we can
make the comparison between the above process and that of saturating the signal at 2 counts.
This saturated signal takes its true values for registered counts of 0 and 1 and then registers 2
for all subsequent counts. The generating function for this scenario is

Qsat(z, T ) =
2∑

n=0

(1 − z)npn = p0(T ) + (1 − z)p1(T ) + (1 − z)2(1 − p0(T ) − p1(T )) (28)

where p(1, T ) is defined by equation (3). The saturated mean is
c̄sat(T )

2
= 1 − p0(T ) − 1

2
p1(T )

= 1 − Qc(1, T ) +
1

2

∂Qc(z, T )

∂z

∣∣∣∣
z=1

. (29)

The probability pr(T ) of counting r emigrants can be calculated from Qc. For the DMI
process, when µ̃T � 1, the generating function (22) takes the form

Qc(1, T ) = exp

(−a

µ̃

(
η

µ̃

)ν
ν

1 + ν
µ̃T

)
(30)

which in the limit T → ∞ is zero and so c̄(T ) and c̄sat(T ) are asymptotically unity and 2
respectively. This can be seen in figure 7, which shows c̄(T ) and c̄sat(T ), normalized by unity
and 2 respectively for the DMI process. The BDMI process has similar behaviour. The figure
shows that in the limit µ̃T 	 1, the clipped mean for both curves does not increase linearly
but rather has power-law dependence

c̄(T ) ∼ a

νµ̃
(ηT )ν + O(T 2ν). (31)

This indicates that even the most severely limited integrated counting measurements retain a
remnant of the scale-free behaviour of the monitored population and no extra information is
gained by increasing the saturation limit. Hence from this point all results will pertain to the
process of hard limiting.

It is also possible to calculate the autocorrelation function for the hard limited process.
This can be found using the joint distribution of counts in two non-overlapping integration
periods of length T, separated by an interval �t . The derivation is quite lengthy, has been
presented elsewhere and so details that are particular to the present application are consigned
to the appendix. The autocorrelation function for the hard limited case is

ζ(T ,�t) = 〈c0(0, T )c0(T + �t, T )〉
〈c0(T )〉2

= (1 − 2Qcl(1; T ) + R(1, 1; T + �t, T ))

(1 − Qcl(1; T ))2
. (32)
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Figure 7. Illustrating the dependence of the hard limited mean and saturated mean, represented by
the full and large dashed line respectively, on the integration time T. The small dashed line shows
the power-law asymptote. The parameters used are the same as those in figure 4. C represents that
both curves have been normalized by 1 and 2 respectively.

The function R is the generating function for the joint distribution of counts in two non-
overlapping equal time intervals, which is defined at the end of the appendix. Due to similar
general behaviour of the autocorrelation for both processes, it is only necessary to plot the
results of one of the processes. Figure 8(a) shows the dependence of the autocorrelation
on the separation time, �t ; between successive samples for three values of integration
time T for the DMI process. For increasing separation time the measurements de-correlate.
Figure 8(b) displays the autocorrelation for the DMI process as a function of integration time
T. As can be seen the autocorrelation possesses power-law divergence for small integration
times, indicating the divergence of the moments. Note that the autocorrelation tends to unity
for large integration times, a standard characteristic of Markovian stochastic processes. For
ηT 	 1 and in the limit �t → 0, the autocorrelation for the DMI process is

ζDMI(T , 0) = µ̃ν

a
(2 − 2ν)(ηT )−ν (33)

whose divergence for small T once again indicates the non-existence of the moments for the
monitored series of events. The corresponding behaviour for the BDMI process is

ζBDMI(T , 0) = (µ̃ − λ)ν

a
(2 − (1 + ξ)ν)(ηT )−ν ξ = (1 + 4b̃c̃)1/2 (34)

which has a similar dependence on the integration time as the DMI process (33). The ratio of
these two leading terms in the autocorrelation functions is

ζDMI

ζBDMI
= 1 − 2ν−1

1 − (1+ξ)ν

2

> 1 (35)

for a choice of constant that produces identical stationary behaviour and is therefore a
distinguishing feature of the two models. This should be contrasted with the case considered
previously [13] which advocated using higher order correlation properties to distinguish two
processes.

Other measurements relating specifically to the time series of events can be calculated.
The probability density for the time τ to the first count, w0(τ ), can be defined as follows [15]:

w0(τ ) = −∂Qcl(1; τ)

∂τ
= −∂Qc(1; τ)

∂τ
. (36)
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Figure 8. (a) The curves show the dependence of the autocorrelation on separation time of
successive samples for T = 0.05 (solid line), 0.1 (large dashed line), 0.2 (small dashed line).
(b) Illustrating the dependence of the autocorrelation, for the DMI process, on the integration
time T. The parameters used for these figures are the same as those used in figure 4.

This random variable is well defined for the unclipped population. Equation (36) is plotted in
figure 9. In the limit µ̃T 	 1, w0(τ ) for the DMI process has the asymptotic behaviour

w0(τ ) = a

(
η

µ̃

)ν

(µ̃τ )−(1−ν) = a
(ητ)ν

µ̃τ
(37)

but for large times the emissions become uncorrelated and the tail of the distribution is
exponential, as expected. The probability density to the first count for the BDMI process has
similar asymptotic behaviour, except that µ̃ is replaced by µ̃ − λ.

The mean time to the first count exists and is given by

〈τ0〉 =
∫ ∞

0
(1 − c̄(τ )) dτ

and the principal parameter affecting this statistic is the index ν. Figure 10 shows a plot of the
mean time to the first count as a function of the index ν. The relationship is predominantly
linear for increasing values of ν.

The probability density of the time τ between counts, can be constructed as [15]

w1(τ ) = τ

c̄(τ )

∂2Qc(1; τ)

∂τ 2
. (38)
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Figure 9. Probability density for the time to the first event and inter-event times of the counts
shown by the full and long dashed lines respectively, together with their asymptotes shown by the
short dashed lines. The parameters are as for figure 4 and the inner scale τ0 = 0.000 01 [14].
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Figure 10. The mean time to the first counted event as a function of the index ν, for values of
µ̃ = 0.01 (
), µ̃ = 2 (♦), µ̃ = 5 (�).

This is valid for all processes where c̄ scales linearly with τ , however, from equation (31), the
scaling of c̄ with τ implies that the apparent rate of occurrence of events c̄/τ increases with
increasing resolution. Therefore in order to define w1(τ ) for the DMI and BDMI processes, a
minimum resolution time τi is required, thus

w1(τ ) = 1
˙̄c(τi)

∂2Qc(1; τ)

∂τ 2
= 1

w0(τi)

∂2Qc(1; τ)

∂τ 2
for τi � τ < ∞

≈ (1 − ν)

τi

(τi

τ

)2−ν

for τi � τ 	 1. (39)

Figure 9 illustrates the power-law behaviour of w1(τ ) for τ 	 1 and the subsequent exponential
cut-off as τ increases. The mean inter-event time and its second moment can now be
constructed:

〈τ1〉 = Qc(1; τi)

w0(τi)
+ τi τ � τi〈

τ 2
1

〉
〈τ1〉2

= 1

〈τ1〉2

(
τi

(
τi + 2

Qc(1; τi)

w0(τi)

)
+

2

w0(τi)

∫ ∞

τi

(1 − c̄(τ )) dτ

)
.

(40)



Generation and monitoring of discrete stable random processes 11601

0.005 0.01 0.05 0.1 0.5 1

i

0.05

0.1

0.5

1

5

10

τ1

0.001 0.005 0.01 0.05 0.1 0.5

0.01

0.05

0.1

0.5

1

5

(a)

τ

0.005 0.01 0.05 0.1 0.5 1

i

2

5

10

20

50

100

200

2

2

0.001 0.005 0.01 0.05 0.1 0.5

1

2

5

10

20

50

100

200

(b)

τ1

τ1

τ

Figure 11. (a) The mean inter-event time as a function of the minimum resolution time. The full,
large dashed and dashed lines represent values for ν = 1/4, 1/2 and 2/3 respectively. (b) Variance
of the inter-event times. The full, large dashed and dashed lines represent values for ν = 1/4, 1/2
and 2/3 respectively. For both figures the small dashed line represents the asymptote for ν = 1/2.

Figure 11(a) shows a plot of the mean inter-event time as a function of the resolution τi . As
can be seen from the dashed line (ν = 1/2) the mean shows fractal scaling at small values of
the minimum resolution time of order

〈τ1〉 ∼ µ̃

aην
τ 1−ν
i . (41)

Figure 11(b) shows a plot of the variance of the inter-event times as a function of the minimum
resolution τi . The dashed line represents the asymptote for ν = 1/2 with behaviour that scales
like (ητi)

−(1−ν). Note once more the power-law dependence for small values of ητi .

5. Summary and discussion

This paper has investigated two discrete stochastic population processes that can be tailored to
produce specific stationary states. The models considered are the death–multiple immigrant
(DMI) model, which is a generalization of the immigrant pair population process [12] and the
second is the birth—death–multiple immigrant (BDMI), for which the above is augmented by
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births. Selecting the rates at which the immigrants are introduced to the population enables a
wide range of stationary states to be accessed by these processes. This paper has focused on
generating discrete stable distributions that have a power-law asymptote PN ∼ 1/N1+ν where
0 < ν < 1, so that the means of the distributions do not exist. The immigration rates for the
DMI process depend on the parameter ν alone but those for the BDMI process are conditional
on the birth and death rates. In both cases it is found that the order m of the immigrants have
rates with power-law asymptote αm ∼ 1/m1+ν , but it is important to stress that the rates are
not a probability distribution, nor is the stationary probability distribution identical to these
rates. The two processes are Markovian and so all joint properties of the processes are known
including, in principle, the autocorrelation and higher order conditional statistical measures.
However, due to the power-law nature of the distributions, none of the moments or correlations
exist. This prompts the next aspect considered by the paper: how may such populations be
monitored and characterized?

Monitoring the population was modelled by counting the number of emigrants that leave
as a result of an additional death process. These emigrants form a series of successive events
which are sampled for a period equivalent to the integration time of the detection scheme.
Because the rate at which the emigrants leave is proportional to the instantaneous size of the
internal population, the monitored population reflects this. Hence no moments or correlation
properties can be defined for the integrated statistics of either model.

Any experimental monitoring method will saturate in excess of its dynamic range, thereby
suppressing large fluctuations, or those occurring too rapidly. This can be idealized by hard
limiting without losing the characteristic intermittent behaviour of the time series. Hard
limiting reveals how the now defined correlation properties have a characteristic fluctuation
time associated with them. Intermittency is best quantified by the probability density for
the time between events, and this has a power-law regime at small times. However, all
moments of the inter-event times exist because the fluctuations have a characteristic lifetime
which introduces naturally an outer scale. A question that remains to be answered is how the
accuracy of measurements of these quantities is affected by hard limiting and the duration of
the experiment?

The models studied here produce the discrete analogue of the continuous stable probability
distribution. The rates at which the immigrants appear were chosen specifically to produce
stationary distributions of the discrete stable class. The useful property to ‘tune’ the stationary
solution to have a particular form provides the means to study a wide range of fluctuation
phenomena. These might include those that have power-law forms that nevertheless are not of
the discrete stable class. Conversely, knowing the rates a priori enables the fluctuations of the
ensemble to be deduced. Constructing appropriate statistics from the monitored populations
then facilitates the important function of discriminating between candidate models of some
complex process, and indeed characterizing scale-free fluctuations. In addition to providing
a class of models with which to describe direct aspects of discrete or pulsed phenomena in
complex systems, the work may be used to extend techniques in queuing theory. Another
situation is if the population represents the number of coherent objects in a system. These
may appear through nucleation or ‘immigration’; give ‘birth’ to smaller structures, which then
dissipate, and ‘die’, so providing a paradigm for various physical processes.

Acknowledgment

The first author is supported on an EPSRC Case Studentship with UKAEA Fusion.



Generation and monitoring of discrete stable random processes 11603

Appendix. Clipped autocorrelation function

The autocorrelation function for the hard limited signal is

〈c(t)c(t ′)〉 =
∞∑

c=0

∞∑
c′=0

cc′p(c, c′) (A.1)

which is unity when c and c′ are both one or more, and zero otherwise. Hence

〈c(t)c(t ′)〉 =
∞∑

c=1

∞∑
c′=1

p(c, c′). (A.2)

Upon using elementary properties of the joint distribution p(c, c′) and the marginal
distributions p(c), one can show that

〈c(t)c(t ′)〉 = 1 − 2p(0) + p(0, 0) (A.3)

where

p(0) = Qcl(1; T ) and p(0, 0) = R(1, 1; t, T ). (A.4)

Here, R(z, z′; t, T ) is the generating function for the joint distribution of counts in two non-
overlapping equal time intervals and can be represented as follows,

R(z, z′; t, T ) = Q1(0, z′; T )QE(�(0, z′; T ); t − T )Q1(f (�(0, z′; T ); t − T ), z; T )

×QE(�(f (�(0, z′; T ); t − T ), z; T );∞)

where for the DMI process f (s; t) and QE(s; t) are given in equation (9) and �(s, z; T ) and
Q1(s, z; T ) are given in equation (22). A full derivation for the definition of R(z, z′; t, T ) can
be found in [16].
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